The
Grumman F-14 Tomcat is a fourth-generation, supersonic, twinjet, two-seat, variable-sweep wing fighter aircraft. The Tomcat was developed for the United States Navy's Naval Fighter Experimental (VFX) program following the collapse of the F-111B project. The F-14 was the first of the American teen-series fighters which were designed incorporating the experience of air combat against MiG fighters during the Vietnam War.
The F-14 first flew in December 1970 and made its first deployment in 1974 with the U.S. Navy aboard USS
Enterprise (CVN-65), replacing the McDonnell Douglas F-4 Phantom II. The F-14 served as the U.S. Navy's primary maritime air superiority fighter, fleet defense interceptor and tactical reconnaissance platform. In the 1990s, it added the Low Altitude Navigation and Targeting Infrared for Night (LANTIRN) pod system and began performing precision ground-attack missions.
[1]
The Tomcat was retired from the U.S. Navy's active fleet on 22 September 2006, having been supplanted by the Boeing F/A-18E and F Super Hornets.
[2] As of 2014, the F-14 was in service with only the Islamic Republic of Iran Air Force, having been exported to Iran in 1976, when the U.S. had amicable diplomatic relations with Iran.
F-14 Tomcat |
|
A U.S. Navy F-14D conducts a mission over the Persian Gulf-region in 2005. |
Role |
Interceptor, air superiority and multirole combat aircraft |
National origin |
United States of America |
Manufacturer |
Grumman Aerospace Corporation |
First flight |
21 December 1970 |
Introduction |
22 September 1974 |
Retired |
22 September 2006 (United States Navy) |
Status |
In service with the Iranian Air Force |
Primary users |
United States Navy (historical)
Imperial Iranian Air Force (historical)
Islamic Republic of Iran Air Force |
Produced |
1969–1991 |
Number built |
712 |
Unit cost |
US$38 million (1998)
|
Development
Background
Beginning in the late 1950s, the U.S. Navy sought a long-range, high-endurance interceptor to defend its carrier battle groups against long-range anti-ship missiles launched from the jet bombers and submarines of the Soviet Union.
The U.S. Navy needed a Fleet Air Defense (FAD) aircraft with a more
powerful radar, and longer range missiles than the F-4 Phantom II to
intercept both enemy bombers and missiles.
[3] The Navy was directed to participate in the Tactical Fighter Experimental (TFX) program with the U.S. Air Force by Secretary of Defense Robert McNamara.
McNamara wanted "joint" solutions to service aircraft needs to reduce
development costs, and had already directed the Air Force to buy the F-4
Phantom II, which was developed for the Navy and Marine Corps.
[4]
The Navy strenuously opposed the TFX as it feared compromises necessary
for the Air Force's need for a low-level attack aircraft would
adversely impact the aircraft's performance as a fighter .
The F-111B was designed to fulfil the carrier-based interceptor role,
but was found to have serious problems concerning both weight and
performance. Additionally, it was not suited to the types of aerial
combat then becoming apparent in Vietnam.
However, weight and performance issues plagued the U.S. Navy F-111B variant for TFX and would not be resolved to the Navy's satisfaction. The F-111 manufacturer General Dynamics partnered with Grumman
on the Navy F-111B. With the F-111B program in distress, Grumman began
studying improvements and alternatives. In 1966, the Navy awarded
Grumman a contract to begin studying advanced fighter designs. Grumman
narrowed down these designs to its 303 design.
[5]
Vice Admiral Thomas F. Connolly, Deputy Chief of Naval Operations for
Air Warfare, took the developmental F-111A variant for a flight and
discovered that it had difficulty going supersonic and had poor carrier
landing characteristics. He later testified to Congress about his
concerns against the official Department of the Navy position and, in
May 1968, Congress stopped funding for the F-111B, allowing the Navy to
pursue an answer tailored to its requirements. The name "Tomcat" was
partially chosen to pay tribute to Admiral Connolly, as the nickname
"Tom's Cat" had already been widely used by the manufacturer, although
the name also followed the Grumman tradition of naming its fighter
aircraft after felines.
[6]
VFX
The F-111B had been designed for the long-range Fleet Air Defense
(FAD) interceptor role, but not for new requirements for air combat
based on experience of American aircraft against agile MiG fighters over
Vietnam. The Navy studied the need for VFAX, an additional fighter that was more agile than the F-4 Phantom for air-combat and ground-attack roles.
[7]
Grumman continued work on its 303 design and offered it to the Navy in
1967, which led to fighter studies by the Navy. The company continued to
refine the design into 1968.
[5]
In July 1968, the Naval Air Systems Command
(NAVAIR) issued a request for proposals (RFP) for the Naval Fighter
Experimental (VFX) program. VFX called for a tandem two-seat,
twin-engined air-to-air fighter with a maximum speed of Mach 2.2. It
would also have a built-in M61 Vulcan cannon and a secondary close air
support role.
[8] The VFX's air-to-air missiles would be either six AIM-54 Phoenix or a combination of six AIM-7 Sparrow and four AIM-9 Sidewinder missiles. Bids were received from General Dynamics, Grumman, Ling-Temco-Vought, McDonnell Douglas and North American Rockwell;
[9] four bids incorporated variable-geometry wings.
[8][N 1]
Grumman's VFX entry was designed around the TF30 engines, AWG-9 radar
and AIM-54 missile intended for the F-111B; this eventually became the
F-14A
McDonnell Douglas and Grumman were selected as finalists in December
1968. Grumman was selected for the contract award in January 1969.
[10] Grumman's design reused the TF30 engines from the F-111B, though the Navy planned on replacing them with the Pratt & Whitney F401-400 engines under development for the Navy, along with the related Pratt & Whitney F100 for the USAF.
[11]
Though lighter than the F-111B, it was still the largest and heaviest
U.S. fighter to fly from an aircraft carrier, a consequence of the
requirement to carry the large AWG-9 radar and AIM-54 Phoenix missiles (from the F-111B) and an internal fuel load of 16,000 lb (7,300 kg).
[12]
Upon winning the contract for the F-14, Grumman greatly expanded its Calverton,
Long Island, New York facility for evaluating the aircraft. Much of the
testing, including the first of many compressor stalls and multiple
ejections, took place over Long Island Sound. In order to save time and
forestall interference from Secretary McNamara, the Navy skipped the
prototype phase and jumped directly to full-scale development; the Air
Force took a similar approach with its F-15.
[13]
The F-14 first flew on 21 December 1970, just 22 months after Grumman
was awarded the contract, and reached initial operational capability
(IOC) in 1973. The United States Marine Corps
was initially interested in the F-14 as an F-4 Phantom II replacement;
going so far as to send officers to Fighter Squadron One Twenty-Four (VF-124)
to train as instructors. The marine corps pulled out of any procurement
when development of the stores management system for ground attack
munitions was not pursued. An air-to-ground capability was not developed
until the 1990s.
[13]
Firing trials involved launches against simulated targets of various
types, from cruise missiles to high-flying bombers. AIM-54 Phoenix
missile testing from the F-14 began in April 1972. The longest single
Phoenix launch was successful against a target at a range of 110 nmi
(200 km) in April 1973. Another unusual test was made on 22 November
1973, when six missiles were fired within 38 seconds at Mach 0.78 and
24,800 ft (7,600 m); four scored direct hits.
[14]
Improvements and changes
With time, the early versions of all the missiles were replaced by
more advanced versions, especially with the move to full solid-state
electronics that allowed better reliability, better ECCM and more space
for the rocket engine. So the early arrangement of the AIM-54A Phoenix
active-radar air-to-air missile, the AIM-7E-2 Sparrow Semi-active radar homing
air-to-air missile, and the AIM-9J Sidewinder heat-seeking air-to-air
missile was replaced in the 1980s with the B (1983) and C (1986) version
of the Phoenix, the F (1977), M (1982), P (1987 or later) for Sparrows,
and with the Sidewinder, L (1979) and M (1982). Within these versions
there are several improved batches (for example, Phoenix AIM-54C++).
[15]
The Tactical Airborne Reconnaissance Pod System (TARPS) was developed in the late 1970s for the F-14. Approximately 65 F-14As and all F-14Ds were modified to carry the pod.
[16]
TARPS was primarily controlled by the Radar Intercept Officer (RIO),
who had a specialized display to observe reconnaissance data. The TARPS
was upgraded with digital camera in 1996 with the "TARPS Digital
(TARPS-DI)". The digital camera was further updated beginning in 1998
with the "TARPS Completely Digital (TARPS-CD)" configuration that
provided real-time transmission of imagery.
[17]
Some of the F-14A aircraft underwent engine upgrades to the GE F110-400 in 1987. These upgraded Tomcats were redesignated F-14A+, which was later changed to F-14B in 1991.
[18]
The F-14D variant was developed at the same time; it included the GE
F110-400 engines with newer digital avionics systems such as a glass cockpit, and compatibility with the Link 16 secure datalink.
[19] The Digital Flight Control System (DFCS) notably improved the F-14's handling qualities when flying at a high angle of attack or in air combat maneuvering.
[20]
Adding ground attack capability
An F-14D launching an AIM-7 Sparrow; a GBU-24 Paveway III is also being carried.
In the 1990s, with the pending retirement of the A-6 Intruder, the F-14 air-to-ground
program was resurrected. Trials with live bombs had been carried out in
the 1980s; the F-14 was cleared to use basic iron bombs in 1992. In Operation Desert Storm, most air-to-ground missions were left to A-7, A-6 Intruder and F/A-18 Hornet
squadrons, the F-14 focused on air defense operations. Following Desert
Storm, F-14As and F-14Bs underwent upgrades to avionics and cockpit
displays to enable the use of precision munitions, enhance defensive
systems, and apply structural improvements. The new avionics were
comparable with the F-14D; upgraded aircraft were designated F-14A
(Upgrade) and F-14B (Upgrade) respectively.
[16]
By 1994, Grumman and the Navy were proposing ambitious plans for
Tomcat upgrades to plug the gap between the retirement of the A-6 and
the F/A-18E/F Super Hornet entering service. However, the upgrades would
have taken too long to implement to meet the gap, and were priced in
the billions; Congress considered this too expensive for an interim
solution.
[16] A quick, inexpensive upgrade using the Low Altitude Navigation and Targeting Infrared for Night (LANTIRN)
targeting pod was devised. The LANTIRN pod provided the F-14 with a
forward-looking infrared (FLIR) camera for night operations and a laser
target designator to direct laser-guided bombs (LGB).
[21]
Although LANTIRN is traditionally a two-pod system, an AN/AAQ-13
navigation pod with terrain-following radar and a wide-angle FLIR, along
with an AN/AAQ-14 targeting pod with a steerable FLIR and a laser
target designator, the decision was made to only use the targeting pod.
The Tomcat's LANTIRN pod was altered and improved over the baseline
configuration, such as a Global Positioning System / Inertial Navigation
System (GPS-INS) capability to allow an F-14 to accurately locate
itself. The pod was carried on the right wing glove pylon.
[21]
An F-14D(R) from VF-213 flying over Iraq on last Tomcat deployment with LANTIRN pod on starboard wing glove station and LGB underneath fuselage.
The LANTIRN pod did not require changes to the F-14's own system
software, but the pod was designed to operate on a MIL-STD-1553B bus not
present on the F-14A or B. Consequently, Martin Marietta specially developed an interface card for LANTIRN. The Radar Intercept Officer
(RIO) would receive pod imagery on a 10-inch Programmable Tactical
Information Display (PTID) or another Multi-Function Display in the F-14
[22][23]
rear cockpit and guided LGBs using a new hand controller installed on
the right side console. Initially, the hand controller replaced the
RIO's TARPS control panel, meaning a Tomcat configured for LANTIRN could
not carry TARPS and the reverse, but eventually a workaround was later
developed to allow a Tomcat to carry LANTIRN or TARPS as needed.
[21]
An upgraded LANTIRN named "LANTIRN 40K" for operations up to
40,000 ft (12,000 m) was introduced in 2001, followed by Tomcat Tactical
Targeting (T3) and Fast Tactical Imagery (FTI), to provide precise
target coordinate determination and ability to transmit images
in-flight.
[24] Tomcats also added the ability to carry the GBU-38 Joint Direct Attack Munition (JDAM) in 2003, giving it the option of a variety of LGB and GPS-guided weapons.
[25] Some F-14Ds were upgraded in 2005 with a ROVER III Full Motion Video (FMV) downlink, a system that transmits real-time images from the aircraft's sensors to the laptop of Forward Air Controller (FAC) on the ground.
[26]
Design
Overview
F-14 Tomcat flight demonstration video
The F-14 Tomcat was designed as both an air superiority fighter and a long-range naval interceptor.
[27][28][29] The F-14 has a two-seat cockpit with a bubble canopy
that affords all-round visibility. It features variable geometry wings
that swing automatically during flight. For high-speed intercept, they
are swept back and they swing forward for lower speed flight.
[15] It was designed to improve on the F-4 Phantom's air combat performance in most respects.
[27]
The F-14's fuselage and wings allow it to climb faster than the F-4,
while the twin-tail arrangement offers better stability. The F-14 is
equipped with an internal 20 mm M61 Vulcan Gatling
cannon mounted on the left side, and can carry AIM-54 Phoenix, AIM-7
Sparrow, and AIM-9 Sidewinder anti-aircraft missiles. The twin engines
are housed in nacelles,
spaced apart by 1 to 3 ft (0.30 to 0.91 m). The flat area of the
fuselage between the nacelles is used to contain fuel and avionics
systems such as the wing-sweep mechanism and flight controls, and the
underside used to carry the F-14's complement of Phoenix or Sparrow
missiles, or assorted bombs.
[15] By itself, the fuselage provides approximately 40 to 60 percent of the F-14's aerodynamic lifting surface depending on the wing sweep position.
[30]
Variable-geometry wings
The F-14's wing sweep can be varied between 20° and 68° in flight,
[31] and can be automatically controlled by the Central Air Data Computer, which maintains wing sweep at the optimum lift-to-drag ratio as the Mach number varies; pilots can manually override the system if desired.
[15]
When parked, the wings can be "overswept" to 75° to overlap the
horizontal stabilizers to save deck space aboard carriers. In an
emergency, the F-14 can land with the wings fully swept to 68°,
[15]
although this presents a significant safety hazard due to greatly
increased airspeed. Thus an aircraft would typically be diverted from an
aircraft carrier to a land base if an incident did occur. The F-14 has
flown and landed safely with an asymmetrical wing-sweep on an aircraft
carrier during testing; this capability could be used in emergencies.
[32]
Rearview of the F-14 showing the area between the engine nacelles
The wings have a two-spar structure with integral fuel tanks. Much of
the structure, including the wing box, wing pivots and upper and lower
wing skins is made of titanium,
[15] a light, rigid and strong material, but also difficult and costly to weld. Ailerons are not fitted, with roll control being provided by wing-mounted spoilers
at low speed (which are disabled if the sweep angle exceeds 57°), and
by differential operation of the all-moving tailerons at high speed.
[15] Full-span slats and flaps
are used to increase lift both for landing and combat, with slats being
set at 17° for landing and 7° for combat, while flaps are set at 35°
for landing and 10° for combat.
[15]
The twin tail layout helps in maneuvers at high AoA (angle of attack)
while reducing the height of the aircraft to fit within the limited roof
clearance of hangars aboard aircraft carriers. Two under-engine nacelle mount points are provided for external fuel tanks carrying an additional 4,000 lb (1,800 kg) of fuel.
Two triangular shaped retractable surfaces, called glove vanes, were
originally mounted in the forward part of the wing glove, and could be
automatically extended by the flight control system at high Mach
numbers. They were used to generate additional lift ahead of the
aircraft's center of gravity, thus helping to compensate for the nose-down pitching
tendencies at supersonic speeds. Automatically deployed at above Mach
1.4, they allowed the F-14 to pull 7.5 g at Mach 2 and could be manually
extended with wings swept full aft. They were later disabled, however,
owing to their additional weight and complexity.
[15] The air brakes
consist of top-and-bottom extendable surfaces at the rearmost portion
of the fuselage, between the engine nacelles. The bottom surface is
split into left and right halves, the arrestor hook hangs between the
two halves, an arrangement sometimes called the "castor tail".
[33]
Engines and landing gear
The F-14 was initially equipped with two Pratt & Whitney TF30 (or JT10A) turbofan engines, providing a total thrust of 20,900 lb (93 kN) and giving the aircraft an official maximum speed of Mach 2.34.
[34] However, the F-14 would normally fly at a cruising speed for reduced fuel consumption, which was important for conducting lengthy patrol missions.
[35]
Both of the engine's rectangular air intakes were equipped with movable
ramps and bleed doors to meet the airflow requirements of the engine
but prevent dangerous shockwaves from entering. Variable nozzles were
also fitted to the engine's exhaust.
An F-14D prepares to refuel with probe extended
The performance of the TF30 engine became an object of criticism. John Lehman, Secretary of the Navy
in the 1980s, told the U.S. Congress that the TF30/F-14 combination was
"probably the worst engine/airframe mismatch we have had in years" and
that the TF30 was "a terrible engine";
[31][33] 28% of all F-14 accidents were attributed to the engine. A high frequency of turbine blade failures
led to the reinforcement of the entire engine bay to limit damage from
such failures. The engines also had proved to be extremely prone to compressor stalls, which could easily result in loss of control, severe yaw oscillations, and could lead to an unrecoverable flat spin.
At specific altitudes, exhaust produced by missile launches could cause
an engine compressor stall; leading to the development of a bleed
system to temporarily reduce engine power and block the frontal intake
during missile launch. With the TF30, the F-14's overall thrust-to-weight ratio at maximum takeoff weight is around 0.56, considerably less than the F-15A's ratio of 0.85; when fitted with the General Electric F110 engine, an improved thrust-to-weight ratio of 0.73 at maximum weight and 0.88 at normal takeoff weight was achieved.
[34]
The landing gear is very robust, in order to withstand the harsh
takeoffs and landings necessary for carrier operation. It comprises a
double nosewheel and widely spaced single main wheels. There are no
hardpoints on the sweeping parts of the wings, and so all the armament
is fitted on the belly between the air intakes and on pylons under the
wing gloves. Internal fuel capacity is 2,400 US gal (9,100 l):
290 US gal (1,100 l) in each wing, 690 US gal (2,600 l) in a series of
tanks aft of the cockpit, and a further 457 US gal (1,730 l) in two
feeder tanks. It can carry two 267 US gal (1,010 l) external drop tanks
under the engine intakes.
[15] There is also an air-to-air refueling probe, which folds into the starboard nose.
[36]
Avionics and flight controls
The cockpit has two seats, arranged in tandem, outfitted with Martin-Baker GRU-7A rocket-propelled ejection seats, rated from zero altitude and zero airspeed up to 450 knots.
[37] The canopy is spacious, and fitted with four mirrors to provide effectively all-round visibility. Only the pilot has flight controls; the flight instruments themselves are of a hybrid analog-digital nature.
[15] The cockpit also features a head-up display
(HUD) to show primarily navigational information; several other
avionics systems such as communications and direction-finders are
integrated into the AWG-9 radar's display. A significant feature of the
F-14 was its Central Air Data Computer (CADC), designed by Garrett AiResearch,
that formed the onboard integrated flight control system. It used a
MOS-based LSI chipset, the MP944, making it possibly the first microprocessor in history.
[38]
F-14 with landing gear deployed
The nose of the aircraft is large because it contains a two-person crew and several bulky avionics
systems. The main element is the Hughes AWG-9 X-band radar; the antenna
is a 36 in (91 cm)-wide planar array, and has integrated IFF antennas.
The AWG-9 has several search and tracking modes, such as Track-While-Scan (TWS), Range-While-Search
(RWS), Pulse-Doppler Single-Target Track (PDSTT), and Jam Angle Track
(JAT); a maximum of 24 targets can be tracked simultaneously, and six
can be engaged in TWS mode up to around 60 mi (97 km). Cruise missiles
are also possible targets with the AWG-9, which can lock onto and track
small objects even at low altitude when in Pulse-Doppler mode.
[15] For the F-14D, the AWG-9 was replaced by the upgraded APG-71 radar. The Joint Tactical Information Display System (JTIDS)/Link 16 for data communications was added later on.
[39]
The F-14 also features electronic countermeasures (ECM) and radar warning (RWR) systems, chaff/flare dispensers, fighter-to-fighter data link, and a precise inertial navigation system.
[15] The early navigation system was inertial-based, point-of-origin coordinates were programmed into a navigation computer and gyroscopes
would track the aircraft's every motion to calculate distance and
direction from that starting point. GPS later was integrated to provide
more precise navigation and redundancy in case either system failed. The
chaff/flare dispensers were located on the underside of the fuselage
and on the tail. The RWR system consisted of several antennas on the
aircraft's fuselage, which could roughly calculate both direction and
distance of enemy radar users; it could also differentiate between
search radar, tracking radar, and missile-homing radar.
[40]
Featured in the sensor suite was the AN/ALR-23, an infrared sensor using indium antimonide
detectors, mounted under the nose; however this was replaced by an
optical system, Northrop's AAX-1, also designated TCS (TV Camera Set).
The AAX-1 helped pilots visually identify and track aircraft, up to a
range of 60 miles (97 km) for large aircraft. The radar and the AAX-1
were linked, allowing the one detector to follow the direction of the
other. A dual infrared/optical detection system was adopted on the later
F-14D.
[citation needed]
Armament
The F-14 was designed to combat highly maneuverable aircraft as well as the Soviet cruise missile and bomber threats.
[29] The Tomcat was to be a platform for the AIM-54 Phoenix, but unlike the canceled F-111B, it could also engage medium- and short-range threats with other weapons.
[27][29] The F-14 was an air superiority fighter, not just a long-range interceptor.
[29] Over 6,700 kg (14,800 lb) of stores could be carried for combat missions on several hardpoints
under the fuselage and under the wings. Commonly, this meant a maximum
of two–four Phoenixes or Sparrows on the belly stations, two
Phoenixes/Sparrows on the wing hardpoints, and two Sidewinders on the
wing hardpoints.
[citation needed] The F-14 was also fitted with an internal 20 mm M61 Vulcan Gatling-type cannon.
Operationally, the capability to hold up to six Phoenix missiles was
never used, although early testing was conducted; there was never a
threat requirement to engage six hostile targets simultaneously and the
load was too heavy to safely recover aboard an aircraft carrier in the
event that the missiles were not fired. During the height of Cold War
operations in the late 1970s and 1980s, the typical weapon loadout on
carrier-deployed F-14s was usually only one AIM-54 Phoenix, augmented by
two AIM-9 Sidewinders, two AIM-7 Sparrow IIIs, a full loadout of 20 mm ammunition and two drop tanks.
[citation needed] The Phoenix missile was used twice in combat by the U.S. Navy, both over Iraq in 1999,
[41][42][43] but the missiles did not score any kills.
Iran made use of the Phoenix system, claiming several kills with it
during the 1980-1988 War with Iraq. Iran tried to use other missiles on
the Tomcat. It attempted to integrate the Russian R-27R "Alamo" BVR
missile, but was apparently unsuccessful. The R-73E "Archer" short-range
missile was announced operational on IRIAF F-14s, with the first
modernized sample delivered to the 82nd TFS in April 2012.
[citation needed]
Operational history
Main article: F-14 Tomcat operational history
United States Navy
An F-14A of VF-84 Jolly Rogers, in a 1970s color scheme
The F-14 began replacing the F-4 Phantom II in U.S. Navy service starting in September 1974 with squadrons VF-1 "Wolfpack" and VF-2 "Bounty Hunters" aboard USS
Enterprise (CVN-65) and participated in the American withdrawal from Saigon. The F-14 had its first kills in U.S. Navy service on 19 August 1981 over the Gulf of Sidra in what is known as the Gulf of Sidra incident. In that engagement two F-14s from VF-41 Black Aces were engaged by two Libyan Su-22 "Fitters". The F-14s evaded the short range heat seeking AA-2 "Atoll"
missile and returned fire, downing both Libyan aircraft. U.S. Navy
F-14s once again were pitted against Libyan aircraft on 4 January 1989,
when two F-14s from VF-32 shot down two Libyan MiG-23 "Floggers" over the Gulf of Sidra in a second Gulf of Sidra incident.
Its first sustained combat use was as a photo reconnaissance
platform. The Tomcat was selected to inherit the reconnaissance mission
upon departure of the dedicated RA-5C Vigilante and RF-8G Crusaders from the fleet. A large pod called the Tactical Airborne Reconnaissance Pod System
(TARPS) was developed and fielded on the Tomcat in 1981. With the
retirement of the last RF-8G Crusaders in 1982, TARPS F-14s became the
U.S. Navy's primary tactical reconnaissance system.
[44]
One of two Tomcat squadrons per airwing was designated as a TARPS unit
and received 3 TARPS capable aircraft and training for 4 TARPS aircrews.
An F-14A from VF-114 intercepting a Soviet Tu-95RT "Bear-D" maritime reconnaissance aircraft.
While the Tomcat was being used by Iran in combat against Iraq in its
intended air superiority mission in the early 1980s, the U.S. Navy
found itself flying regular daily combat missions over Lebanon to
photograph activity in the Bekaa Valley.
At the time, the Tomcat had been thought too large and vulnerable to be
used over land, but the need for imagery was so great that Tomcat
aircrews developed high speed medium altitude tactics to deal with
considerable AAA and SA-7 SAM threat in the Bekaa area. The first
exposure of a Navy Tomcat to a SA-2 missile was over Somalia in April
1983 when a local battery was unaware of two Tomcats scheduled for a
TARPS mission in prelude to an upcoming international exercise in
vicinity of Berbera. An SA-2 was fired at the second Tomcat while
conducting 10,000-ft mapping profile at max conserve setting. The Tomcat
aircrews spotted the missile launch and dove for the deck thereby
evading it without damage. The unexpected demand for combat TARPS laid
the way for high altitude sensors such as the KA-93 36 in (910 mm) Long
Range Optics (LOROP) to be rapidly procured for the Tomcat as well as an
Expanded Chaff Adapter (ECA) to be incorporated in an AIM-54 Phoenix
Rail. Commercial "Fuzz buster" type radar detectors were also procured
and mounted in pairs in the forward cockpit as a stop gap solution to
detect SAM radars such as the SA-6. The ultimate solution was an upgrade
to the ALR-67 then being developed, but it would not be ready until the
advent of the F-14A+ later in 1980s.
[citation needed]
An F-14A of VF-32 during Operation Desert Storm with a KC-135 Stratotanker and two EA-6B Prowlers in the background
The participation of the F-14 in the 1991 Operation Desert Storm
consisted of Combat Air Patrol (CAP) over the Red Sea and Persian Gulf
and overland missions consisting of strike escort and reconnaissance.
Until the waning days of Desert Storm, in-country air superiority was
tasked to USAF F-15 Eagles
due to the way the Air Tasking Orders (ATO) delegated primary overland
CAP stations to the F-15 Eagle. The governing Rules of Engagement (ROE)
also dictated a strict Identification Friend or Foe (IFF) requirement
when employing Beyond Visual Range weapons such as the AIM-7 Sparrow and
particularly the AIM-54 Phoenix. This hampered the Tomcat from using
its most powerful weapon. Furthermore, the powerful emissions from the
AWG-9 radar are detectable at great range with a radar warning receiver. Iraqi fighters routinely retreated as soon as the Tomcats "lit them up" with the AWG-9.
[45][46]
The U.S. Navy suffered its only F-14 loss from enemy action on 21
January 1991 when BuNo 161430, an F-14A upgraded to an F-14A+, from VF-103 was shot down by an SA-2 surface-to-air missile while on an escort mission near Al Asad
airbase in Iraq. Both crew survived ejection with the pilot being
rescued by USAF Special Forces and the RIO being captured by Iraqi
troops as a POW until the end of the war.
[47] The F-14 also achieved its final kill, an Mi-8 "Hip" helicopter, with an AIM-9 Sidewinder.
In 1995, F-14s from VF-14 and VF-41 participated in Operation Deliberate Force as well as Operation Allied Force in 1999, and in 1998, VF-32 and VF-213 participated in Operation Desert Fox. On 15 February 2001 the Joint Direct Attack Munition or JDAM was added to the Tomcat's arsenal. On 7 October 2001, F-14s would lead some of the first strikes into Afghanistan marking the start of Operation Enduring Freedom and the first F-14 drop of a JDAM occurred on 11 March 2002. F-14s from VF-2, VF-31, VF-32, VF-154, and VF-213 would also participate in Operation Iraqi Freedom. The F-14Ds of VF-2, VF-31, and VF-213 obtained JDAM capability in March 2003.
[25]
On 10 December 2005, the F-14Ds of VF-31 and VF-213 were upgraded with a
ROVER III downlink for transmitting images to a ground Forward Air
Controller (FAC).
[26]
The last F-14 take-off from a carrier, USS
Theodore Roosevelt on 28 July 2006
While the F-14 had been developed as a lightweight alternative to the 80,000 lb (36,000 kg) F-111B, the F-14 was still the largest and most expensive fighter of its time. VFAX
was revived in the 1970s as a lower cost solution to replacing the Navy
and Marine Corps's fleets of F-4s, and A-7s. VFAX was directed to
review the fighters in the USAF Light Weight Fighter
competition, which led to the development of the F/A-18 Hornet as
roughly a midsize fighter and attack aircraft. In 1994, Congress would
reject Grumman proposals to the Navy to upgrade the Tomcat beyond the D
model (such as the Super Tomcat 21, the cheaper QuickStrike version, and
the more advanced Attack Super Tomcat 21).
[48]
Instead, the Navy elected to retire the F-14 and chose the F/A-18E/F
Super Hornet to fill the roles of fleet defense and strike formerly
filled by the F-14. The last two F-14 squadrons, the VF-31 Tomcatters and the VF-213 Black Lions conducted their last fly-in at Naval Air Station Oceana on 10 March 2006.
[49]
The last American F-14 combat mission was completed on 8 February 2006, when a pair of Tomcats landed aboard the USS
Theodore Roosevelt (CVN-71) after one dropped a bomb over Iraq. During their final deployment with the USS
Theodore Roosevelt (CVN-71),
VF-31 and VF-213 collectively completed 1,163 combat sorties totaling
6,876 flight hours, and dropped 9,500 lb (4,300 kg) of ordnance during
reconnaissance, surveillance, and close air support missions in support
of Operation Iraqi Freedom.
[50] The USS
Theodore Roosevelt (CVN-71)
launched an F-14D, of VF-31, for the last time on 28 July 2006; piloted
by Lt. Blake Coleman and Lt. Cmdr Dave Lauderbaugh as RIO.
[51]
The official final flight retirement ceremony was on 22 September
2006 at Naval Air Station Oceana, and was flown by Lt. Cmdr. Chris
Richard and Lt. Mike Petronis as RIO in a backup F-14 after the primary
aircraft experienced mechanical problems.
[52][53]
The actual last flight of an F-14 in U.S. service took place 4 October
2006, when an F-14D of VF-31 was ferried from NAS Oceana to Republic
Airport on Long Island, New York.
[53] The remaining intact F-14 aircraft in the U.S. were flown to and stored at the 309th Aerospace Maintenance and Regeneration Group "Boneyard", at Davis-Monthan Air Force Base, Arizona; as of 2007 the aircraft were to be shredded to prevent any components from being acquired by Iran.
[54] In August 2009, the 309th AMARG announced that the last of the F-14's planned for scrapping were taking to HVF West, Tucson, Arizona for shredding. At that time only 11 F-14's remained in desert storage.
[55]
Iran
F-14A of the Iranian Air Force, 2009
The sole foreign customer for the Tomcat was the Imperial Iranian Air Force, during the reign of the last Shah (King) of Iran, Mohammad Reza Pahlavi.
In the early 1970s, the Imperial Iranian Air Force (IIAF) was searching
for an advanced fighter, specifically one capable of intercepting Soviet MiG-25 reconnaissance flights. After a visit of U.S. President Richard Nixon
to Iran in 1972, during which Iran was offered the latest in American
military technology, the IIAF narrowed its choice between the F-14
Tomcat or the McDonnell Douglas F-15 Eagle.
Grumman Corporation arranged a competitive demonstration of the Eagle
against the Tomcat before the Shah, and in January 1974, Iran ordered 30
F-14s and 424 AIM-54 Phoenix missiles, initiating Project
Persian King,
worth US$300 million. A few months later, this order was increased to a
total of 80 Tomcats and 714 Phoenix missiles as well as spare parts and
replacement engines for 10 years, complete armament package, and
support infrastructure (including construction of the Khatami Air Base
near Esfahan).
The first F-14 arrived in January 1976, modified only by the removal
of classified avionics components, but fitted with the TF-30-414
engines. The following year 12 more were delivered. Meanwhile, training
of the first groups of Iranian crews by the U.S. Navy, was underway in
the USA; and one of these conducted a successful shoot-down with a
Phoenix missile of a target drone flying at 50,000 ft (15 km).
Following the overthrow of the Shah in 1979, the air force was renamed the Islamic Republic of Iran Air Force (IRIAF) and the post-revolution interim government of Iran canceled most Western arms orders. In 1980 an Iranian F-14 shot down an Iraqi Mil Mi-25 helicopter for its first air-to-air kill during the Iran-Iraq conflict.
[56]
Flight formation of Iranian Tomcats, 2008
According to research by Tom Cooper, within the first six months of
the war Iranian F-14s scored over 50 air-to-air victories, mainly
against Iraqi MiG-21s and MiG-23s, but some also against Su-20/22s. In exchange, one F-14A was lost to a MiG-21.
[56]
Between 1982 and 1986 Iranian Tomcats were to see use in a series of
slowly developing campaigns: mainly tasked with patrolling the skies
over objects vital for the survival of Iranian regime and economy, like
Tehran or Kharg Island.
Most of these patrols were supported by Boeing 707-3J9C tankers, and
some lasted as long as 10 hours with up to four in-flight refuelings.
Time and again, they were involved in new air battles, and performed
well but their main role was intimidating the Iraqi Air Force. Cognizant
of previous heavy losses in battles against Iranian F-14s, the Iraqis
avoided any engagement with them, so that the sole presence of a Tomcat
over the target area was enough to force Iraqi formations to abort their
attacks. Because of this, and because of the precision and
effectiveness of the Tomcat's AWG-9 weapons system and AIM-54A Phoenix
long-range air-to-air missiles, the F-14 maintained air control over a
lengthy period of time.
[citation needed]
Iranian ace Jalil Zandi is credited by Tom Cooper with shooting down 11 Iraqi aircraft during the Iran–Iraq War, making him the highest scoring F-14 pilot.
[57]
By 1987, the Iraqis had suffered such heavy losses to Iranian Tomcats
that they were forced to find a solution with which they could engage
them under equal circumstances. In early 1988 France delivered Mirage F.1EQ-6 fighters, equipped with Super 530D and Magic Mk.2 missiles, to Iraq.
[citation needed]
Overall, Tom Cooper claims that Iranian F-14s shot down at least 160 Iraqi aircraft during the Iran-Iraq War, which include 58 MiG-23s, 23 MiG-21s, nine MiG-25s, 33 Dassault Mirage F1s, 23 Su-17s, one Mil Mi-24, five Tu-22s, two MiG-27s, one Dassault Mirage 5, one B-6D, one Aérospatiale Super Frelon,
and two unknown aircraft. Despite the circumstances under which the
F-14s and their crews had to operate in Iran during the eight-year long
war against Iraq, it is still the premier fighter in the Iranian Air
Force. The aircraft continued to operate without any support from AWACS
or AEW aircraft, without even a proper support from the Ground Control Intercept(GCI).
It faced an enemy that was repeatedly introducing new and more capable
fighters, radars, weapons and ECM systems in combat and was supported by
no less than three "superpowers" (France, the USA, and the USSR). Their
crews were also permanently under heavy pressure from the regime in
Tehran. That it proved as successful in combat is a result of strenuous
efforts of IRIAF personnel and immense investment of the Iranian
economy.
[56]
On 31 August 1986, an Iranian F-14A armed with at least one AIM-54A missile defected to Iraq. In addition, one or more of Iran's F-14A was delivered to the Soviet Union in exchange for technical assistance; at least one of its crew defected to the Soviet Union.
[58]
Iran had an estimated 44 F-14s in 2009;
[59] It has 19 F-14s in operation in January 2013, according to estimate by Aviation Week.
[60]
In January 2007, the U.S. Department of Defense announced that sales
of spare F-14 parts would be suspended over concerns of the parts ending
up in Iran.
[61] In July 2007, the remaining American F-14s were shredded to ensure that any parts could not be acquired.
[54]
In summer of 2010, Iran requested that the United States deliver the
80th F-14 it had purchased in 1974, but delivery was denied after the
Islamic Revolution.
[62][63]
In October 2010, an Iranian Air Force commander claimed that the
country overhauls and optimizes different types of military aircraft,
mentioning that Air Force has even installed Iran-made radar systems on
the F-14.
[64]
On 26 January 2012, an Iranian F-14 crashed three minutes after takeoff. Both crew members were killed.
[65]
Variants
A total of 712 F-14s were built
[66] from 1969 to 1991.
[67] F-14 assembly and test flights were performed at Grumman's plant in Calverton on Long Island, NY. Grumman facility at nearby Bethpage, NY
was directly involved in F-14 manufacturing and was home to its
engineers. The airframes were partially assembled in Bethpage and then
shipped to Calverton for final assembly. Various tests were also
performed at the Bethpage Plant. Over 160 of the U.S. aircraft were
destroyed in accidents.
[68]
Close-up view of the distinctive afterburner petals of the GE F110 engine
F-14A
The F-14A was the initial two-seat all-weather interceptor fighter
variant for the U.S. Navy. It first flew on 21 December 1970. The first
12 F-14As were prototype versions
[69]
(sometimes called YF-14As). Modifications late in its service life
added precision strike munitions to its armament. The U.S. Navy received
478 F-14A aircraft and 79 were received by Iran.
[66] The final 102 F-14As were delivered with improved TF30-P-414A engines.
[70] Additionally, an 80th F-14A was manufactured for Iran, but was delivered to the U.S. Navy.
[66]
F-14B
The F-14 received its first of many major upgrades in March 1987 with
the F-14A Plus (or F-14A+). The F-14A's P&W TF30 engine was
replaced with the improved GE F110-GE400 engine. The F-14A+ also received the state-of-the-art ALR-67
Radar Homing and Warning (RHAW) system. Much of the avionics as well as
the AWG-9 radar were retained. The F-14A+ was later redesignated F-14B
on 1 May 1991. A total of 38 new aircraft were manufactured and 48 F-14A
were upgraded into B variants.
[18]
The TF30 had been plagued from the start with susceptibility to compressor stalls
at high AoA and during rapid throttle transients or above 30,000 ft
(9,100 m). The F110-GE400 engine provided a significant increase in
thrust, producing 30,200 lbf (134 kN) with afterburner at sea level. The
increased thrust gave the Tomcat a better than 1:1 thrust-to-weight
ratio at low fuel quantities. The basic engine thrust without
afterburner was powerful enough for carrier launches, further increasing
safety. Another benefit was allowing the Tomcat to cruise comfortably
above 30,000 ft (9,100 m), which increased its range and survivability.
The F-14B arrived in time to participate in Desert Storm.
In the late 1990s, 67 F-14Bs were upgraded to extend airframe life
and improve offensive and defensive avionics systems. The modified
aircraft became known as
F-14B Upgrade or as "Bombcat".
[70]
F-14D
The final variant of the F-14 was the F-14D Super Tomcat. The F-14D
variant was first delivered in 1991. The original TF-30 engines were
replaced with GE F110-400 engines, similar to the F-14B. The F-14D also
included newer digital avionics systems including a glass cockpit and replaced the AWG-9 with the newer AN/APG-71
radar. Other systems included the Airborne Self Protection Jammer
(ASPJ), Joint Tactical Information Distribution System (JTIDS),
SJU-17(V) Naval Aircrew Common Ejection Seats (NACES) and Infra-red search and track (IRST).
[71]
An upgraded F-14D(R) Tomcat with the ROVER transmit antenna circled with USS
Theodore Roosevelt (CVN-71) in the background
Although the F-14D was to be the definitive version of the Tomcat,
not all fleet units received the D variant. In 1989, Secretary of
Defense Dick Cheney
refused to approve the purchase of any more F-14D model aircraft for
$50 million each and pushed for a $25 million modernization of the F-14
fleet instead. Congress decided not to shut production down and funded
55 aircraft as part of a compromise. A total of 37 new aircraft were
completed, and 18 F-14A models were upgraded to D-models, designated
F-14D(R) for rebuild.
[18] An upgrade to the F-14D's computer software to allow AIM-120 AMRAAM missile capability was planned but was later terminated.
[16]
While upgrades had kept the F-14 competitive with modern fighter
aircraft technology, Cheney called the F-14 1960s technology. Despite an
appeal from the Secretary of the Navy for at least 132 F-14Ds and some
aggressive proposals from Grumman for a replacement,
[72]
Cheney planned to replace the F-14 with a fighter that was not
manufactured by Grumman. Cheney called the F-14 a "jobs program", and
when the F-14 was canceled, an estimated 80,000 jobs of Grumman
employees, subcontractors, or support personnel were affected.
[73] Starting in 2005, some F-14Ds received the ROVER III upgrade.
Projected variants
The first
F-14B was to be an improved version of the F-14A with more powerful "Advanced Technology Engine" F401 turbofans. The
F-14C was a projected variant of this initial F-14B with advanced multi-mission avionics.
[74]
Grumman also offered an interceptor version of the F-14B in response to
the U.S. Air Force's Improved Manned Interceptor Program to replace the
Convair F-106 Delta Dart as an Aerospace Defense Command interceptor in the 1970s. The F-14B program was terminated in April 1974.
[75]
Grumman's proposed F-14 Interceptor for USAF Aerospace Defense Command
in 1972 with the simulated "Buzz Code" and Aerospace Defense Command
livery and emblem on the tail
Grumman proposed a few improved
Super Tomcat versions. The first was the
Quickstrike,
which was an F-14D with navigational and targeting pods, additional
attach points for weapons, and added ground attack capabilities to its
radar. The Quickstrike was to fill the role of the A-6 Intruder after it was retired. This was not considered enough of an improvement by Congress, so the company shifted to the
Super Tomcat 21 proposed design. The Super Tomcat 21 was a proposed lower cost alternative to the Navy Advanced Tactical Fighter (NATF). The Grumman design would have the same shape and body as the Tomcat, and an upgraded AN/APG-71
radar. New GE F110-129 engines were to provide a supercruise speed of
Mach 1.3 and featured thrust vectoring nozzles. The version would have
increased fuel capacity and modified control surfaces for improved
takeoffs and lower landing approach speed. The
Attack Super Tomcat 21
version was the last Super Tomcat proposed design. It added even more
fuel capacity, more improvements to control surfaces, and possibly an active electronically scanned array (AESA) radar from the canceled A-12 attack aircraft.
[76]
The last "Tomcat" variant was the
ASF-14 (Advanced Strike
Fighter-14), Grumman's replacement for the NATF concept. By all
accounts, it would not be even remotely related to the previous Tomcats
save in appearance, incorporating the new technology and design know-how
from the Advanced Tactical Fighter (ATF) and Advanced Tactical Aircraft
(ATA) programs. The ASF-14 would have been a new-build aircraft;
however, its projected capabilities were not that much better than that
of the (A)ST-21 variants.
[77]
In the end the Attack Super Tomcat was considered to be too costly. The
Navy decided to pursue the cheaper F/A-18E/F Super Hornet to fill the
fighter-attack role.
[76]
Operators
F-14 Tomcat operators as of 2013 (former operators in red)
Two IRIAF F-14 Tomcats armed with AIM-54 Phoenixes, AIM-9 Sidewinders, AIM-7 Sparrows, and an Iranian-modified version of the surface-to-air Hawk missile.
F-14A Tomcat of VF-126 c1993
Front view of an F-14B at Yokota Air Base, Tokyo, Japan, 2003
F-14A BuNo 162689 at the USS
Hornet Museum in Alameda, California, 2009
- Iran
- Islamic Republic of Iran Air Force
- 72nd TFS: F-14A, 1976–1985
- 73rd TFS: F-14A, 1977–1985
- 81st TFS: F-14A, 1977–present
- 82nd TFS: F-14A, 1978–present
- 83rd Tomcat Flight School: F-14A, 1978–1979
- 83rd TFS: F-14A, renamed former 62nd TFS[78]
- United States
- United States Navy operated F-14 from 1974 to 2006
- Navy Fighter Weapons School (TOPGUN) (Merged with Strike University (Strike U) to form Naval Strike and Air Warfare Center (NSAWC) 1996)
- VF-126 Bandits (Disestablished 1 April 1994)
- VF-1 Wolfpack (Disestablished 30 September 1993)
- VF-2 Bounty Hunters (Pacific Fleet through 1996, Atlantic Fleet 1996-2003, Pacific Fleet 2003–present; redesignated VFA-2 with F/A-18F, 1 July 2003)
- VF-11 Red Rippers (Redesignated to VFA-11 with F/A-18F, May 2005)
- VF-14 Tophatters (Redesignated VFA-14 with F/A-18E, 1 December 2001, and transferred to Pacific Fleet, 2002)
- VF-21 Freelancers (Disestablished 31 January 1996)
- VF-24 Fighting Renegades (Disestablished 20 August 1996)
- VF-31 Tomcatters (Redesignated VFA-31 with F/A-18E, October 2006)
- VF-32 Swordsmen (Redesignated VFA-32 with F/A-18F, 1 October 2005)
- VF-33 Starfighters (Disestablished 1 October 1993)
- VF-41 Black Aces (Redesignated VFA-41 with F/A-18F, 1 December 2001)
- VF-51 Screaming Eagles (Disestablished 31 March 1995)
- VF-74 Bedevilers (Disestablished 30 April 1994)
- VF-84 Jolly Rogers (Disestablished 1 October 1995; squadron heritage and nickname transferred to VF-103)
- VF-102 Diamondbacks (Redesignated VFA-102 with F/A-18F, 1 May 2002, and transferred to Pacific Fleet)
- VF-103 Sluggers/Jolly Rogers (Redesignated VFA-103 with F/A-18F, 1 May 2005)
- VF-111 Sundowners (Disestablished 31 March 1995; reestablished as VFC-111 in Naval Air Force Reserve with Northrop F-5N and F-5F, 1 November 2006)
- VF-114 Aardvarks (Disestablished 30 April 1993)
- VF-142 Ghostriders (Disestablished 30 April 1995)
- VF-143 Pukin' Dogs (Redesignated VFA-143 with F/A-18E, early 2005)
- VF-154 Black Knights (Redesignated VFA-154 with F/A-18F, 1 October 2003)
- VF-191 Satan's Kittens (Disestablished 30 April 1988)
- VF-194 Red Lightnings (Disestablished 30 April 1988)
- VF-211 Fighting Checkmates (Pacific Fleet through 1996, then transferred to Atlantic Fleet; redesignated VFA-211 with F/A-18F, 1 October 2004)
- VF-213 Black Lions (Pacific Fleet through 1996, then transferred to Atlantic Fleet; redesignated VFA-213 with F/A-18F, May 2006)
- Naval Air Systems Command Test and Evaluation Squadrons
- VX-4 Evaluators (Disestablished 30 September 1994 and merged into VX-5 to form VX-9)
- VX-9 Vampires (Currently operates F/A-18C/D/E/F, EA-18G, EA-6B, AV-8B, AH-1 and UH-1)
- VX-23 Salty Dogs (Currently operates F/A-18A+/B/C/D/E/F, EA-6B, EA-18G and T-45)
- VX-30 Bloodhounds (Currently operates P-3, C-130, S-3)
- Fleet Replacement Squadrons
- VF-101 Grim Reapers; Atlantic Fleet, then sole single-site, F-14 FRS (Disestablished 15 September 2005; reestablished as VFA-101, sole single-site F-35C Fleet Replacement Squadron in May 2012)[79]
- VF-124 Gunfighters; Pacific Fleet F-14 FRS
- (Disestablished 30 September 1994)
- Naval Air Force Reserve Squadrons
- VF-201 Hunters (Redesignated VFA-201 and reequipped with F/A-18A+ on 1 January 1999; disestablished 30 June 2007)
- VF-202 Superheats (Disestablished 31 December 1994)
- VF-301 Devil's Disciples (Disestablished 11 September 1994)
- VF-302 Stallions (Disestablished 11 September 1994)
- Naval Air Force Reserve Squadron Augmentation Units (SAUs)
- VF-1285 Fighting Fubijars (Disestablished September 1994);[80] augmented VF-301 and VF-302
- VF-1485 Americans (Disestablished September 1994);[81] augmented VF-124
- VF-1486 Fighting Hobos (Disestablished September 2005);[82] augmented VF-101
Aircraft on display
An F-14A on display at Grumman Memorial Park in New York
F-14A BuNo 160661 on display at the U.S. Space and Rocket Center's
Aviation Challenge facility in Huntsville, Alabama in August 2009
YF-14A at the Cradle of Aviation Museum
F-14D at the Intrepid Sea-Air-Space Museum
F-14A of VF-84 "Jolly Rogers" at the Museum of Flight
Notable F-14s preserved at museums and military installations include:
- Bureau Number (BuNo) – Model – Location – Significance
- F-14A
- 157982 - Cradle of Aviation Museum, Garden City, New York. Prototype #3 Nonstructural Demonstration Testbed.[83]
- 157984 - National Naval Aviation Museum, Naval Air Station Pensacola, Florida. Fifth F-14 manufactured and one of the prototypes used in flight testing. Mounted on pedestal at entrance to museum.[84]
- 157988 - NAS Oceana Air Park, Virginia.[85]
- 157990 - March Field Air Museum, Riverside, California.[86]
- 158623 - Naval Base Ventura County, NAS Point Mugu, California. Pedestal mount at Front Gate Airpark.[87]
- 158978 - USS Midway Museum, San Diego, California.[88]
- 158985 - Yanks Air Museum, Chino, California.[89]
- 158998 - Air Victory Museum, Lumberton, New Jersey.[90]
- 158999 - Naval Air Station Joint Reserve Base Fort Worth (former Carswell AFB), Fort Worth, Texas.[91]
- 159025 - Patriot's Point Naval and Maritime Museum, Charleston, South Carolina.[92]
- 159445 - Naval Station Norfolk (former Naval Air Station Norfolk) East Gate Airpark, Virginia.[93]
- 159448 - Naval Inventory Control Point, Pennsylvania.[94]
- 159455 - NAS Patuxent River, Lexington Park, Maryland. Former VX-23 flight test squadron aircraft.[95]
- 159600 - Fort Worth Aviation Museum, Fort Worth, Texas[96]
- 159620 - NAF El Centro, California.[97]
- 159626 - Naval Strike and Air Warfare Center, Naval Air Station Fallon, Nevada.[98]
- 159631 - San Diego Aerospace Museum, San Diego, California.[99]
- 159829 - Wings Over the Rockies Air and Space Museum, former Lowry AFB, Denver, Colorado. From VF-211, later used for aircraft maintenance training by Naval Air Reserve Center Denver at Buckley AFB.[100]
- 159830 - Western Museum of Flight, Hawthorne, California.[101]
- 159848 - Tillamook Air Museum, Tillamook, Oregon.[102]
- 159853 - Defense Supply Center Richmond, Richmond, Virginia.[103]
- 159856 - Naval Air Facility El Centro, California.[104]
- 160382 - Museum of Flight, Tukwila, Washington.
VF-84 "Jolly Rogers" AJ202. Stationed on the USS Nimitz. This aircraft,
as well as several other F-14As from the famous "Jolly Rogers"
squadron, appear in the 1980 film The Final Countdown which was filmed
on board the USS Nimitz. On loan from the National Museum of Naval
Aviation at Pensacola, Florida.[105]
- 160386 - Naval Air Station Joint Reserve Base Willow Grove, Pennsylvania.[106]
- 160391 - Texas Air Museum, Lubbock, Texas.[107]
- 160395 - Air Zoo, Kalamazoo, Michigan.[108]
- 160401 - Fleet Area Control and Surveillance Facility Virginia Capes (FACSFAC VACAPES), Naval Air Station Oceana, Virginia.[109]
- 160403 - American Airpower Heritage Museum, Midland, Texas.[110]
- 160411 - Empire State Aerosciences Museum, Glenville, New York.[111]
- 160658 - NAES Lakehurst, New Jersey.[112]
- 160661 - U.S. Space and Rocket Center's Aviation Challenge facility in Huntsville, Alabama.[113]
- 160666 - Western Aerospace Museum, Oakland, California.
Originally delivered to VF-111 in 1978, subsequently reassigned to
NAVAIR test duties, permanently modified for development of follow-on
avionics and weapons systems.[114]
- 160684 - Pima Air and Space Museum, adjacent to Davis-Monthan AFB, Tucson, Arizona.
Repainted in its original markings as "NL 211" of VF-111 aboard USS
KITTY HAWK (CV-63), as this particular aircraft appeared in its initial
operational squadron service, circa 1978-1981.[115]
- 160694 - USS Lexington Museum, Corpus Christi, Texas.
- Painted with Hi-Vis markings of VF-103 "Jolly Rogers". Aircraft is on
loan from the National Museum of Naval Aviation at NAS Pensacola,
Florida.[116]
- 160889 - Pacific Coast Air Museum at Charles M. Schulz Sonoma County Airport, Santa Rosa, California.[117]
- 160898 - Palm Springs Air Museum, Palm Springs, California.[118]
- 160902 - Riverhead, New York.[119]
- 160903 - Mid-America Air Museum, Liberal Mid-America Regional Airport, Liberal, Kansas.[120]
- 160909 - Dobbins Air Reserve Base, Atlanta, Georgia.[121]
- 160914 - Willmar Municipal Airport, Wilmar, Minnesota[122]
- 161134 - Valiant Air Command Warbird Museum, Space Coast Regional Airport, Titusville, Florida.[123]
- 161163 - Prairie Aviation Museum, Bloomington, Illinois. Depot Level Conversion performed September 1991. Retired as MODEX 205 of Fighter Squadron 213 (VF-213), Black Lions.[124]
- 162591 - Quonset Air Museum, Quonset State Airport (former Naval Air Station Quonset Point), North Kingstown, Rhode Island.[125]
- 162592 - Ronald Reagan Presidential Foundation and Library (Painted Buno 160403).
- 162608 - Southern Museum of Flight, Birmingham, Alabama.[126]
- 162689 - USS Hornet (CV-12), USS Hornet Museum, former Naval Air Station Alameda, Alameda, California.[127]
- 162694 - MAPS Air Museum, North Canton, Ohio.[128]
- 162710 - National Naval Aviation Museum, Naval Air Station Pensacola, Florida.[129]
- F-14B
- 157986 - USS Intrepid (CV-11), Intrepid Sea-Air-Space Museum, Manhattan, New York. 7th Tomcat built, retained as research and development airframe.[130]
- 161598 - Tulsa Air and Space Museum, Tulsa, Oklahoma. It has VF-41 "Black Aces" markings.[131]
- 161605 - Wings of Eagles Discovery Center/National Warplane Museum, Horseheads, New York.[132]
- 161615 - Combat Air Museum, Topeka, Kansas.[133]
- 161620 - Selfridge Military Air Museum, Selfridge Air National Guard Base, Mount Clemens, Michigan.[134]
- 161623 - Patuxent River Naval Air Museum, Naval Air Station Patuxent River, Lexington Park, Maryland. It is a former VX-23 flight test squadron aircraft.[135]
- 162912 - Grissom Air Museum, Grissom Air Reserve Base (former Grissom AFB), Indiana.[136]
- 162916 - Richard J. Goss Post #8896, East Berlin, Pennsylvania.[137]
- 162926 - New England Air Museum, Windsor Locks, Connecticut.[138]
- F-14D(R)
- 159600 - OV-10 Bronco Museum, Fort Worth, Texas.
On loan from the National Museum of Naval Aviation, NAS Pensacola,
Florida. Nicknamed "Christine", it was the longest-serving F-14 Tomcat
in U.S. Navy. Remanufactured from F-14A to F-14D(R) configuration, it
was originally built in 1976 and made the final combat deployment/cruise
of the F-14 in 2006.[139]
- 159610 - Smithsonian National Air & Space Museum, Steven F. Udvar-Hazy Center, Chantilly, Virginia. This F-14 was one of those involved in the second Gulf of Sidra incident.[140]
- 159619 - Florida Air Museum at Sun 'n Fun, Lakeland Linder Regional Airport, Lakeland, Florida.[141]
- 161159 - National Naval Aviation Museum, Naval Air Station Pensacola, Florida. Completed the last combat flight and the last combat carrier arrested landing (trap) by a U.S. Navy F-14.[84]
- 161166 - Carolinas Aviation Museum, Charlotte, North Carolina.[142]
- 162595 - Naval Test Wing Atlantic, Naval Air Station Patuxent River, Maryland.[143]
- F-14D
- 163893 - main gate, Arnold Engineering and Development Center, Arnold AFB, Tennessee.[144]
- 163897 - Aerospace Museum of California, McClellan Airfield (former McClellan AFB and current Coast Guard Air Station Sacramento), Sacramento, California.[145]
- 163902 - Hickory Aviation Museum at Charlotte Douglas International Airport, Hickory, North Carolina.
VF-31 Tomcatters aircraft Modex number 107; flew the F-14 retirement
ceremony with LCDR Chris Richard and LT Mike Petronis at the controls.[146]
- 163904 - Pacific Aviation Museum, Ford Island, Joint Base Pearl Harbor-Hickam, Hawaii.[147]
- 164342 - Wings Over Miami, Miami, Florida.[148]
- 164343 - Evergreen Aviation Museum, McMinnville, Oregon.[149]
- 164346 - Virginia Aviation Museum, Richmond, Virginia.
On loan from National Museum of Naval Aviation, Pensacola, Florida.
Last Tomcat to operationally trap aboard a U.S. Navy aircraft carrier.[150]
- 164350 - Texas Aviation Hall of Fame, Galveston, Texas.[151]
- 164601 - Castle Air Museum at former Castle AFB, Atwater, California.[152]
- 164603 - Grumman Headquarters, Bethpage, New York.
Felix 101 from VF-31 is the last Tomcat to fly in U.S. Navy service.
Final flight was from NAS Oceana, Virginia to the American Airpower
Museum at Republic Airport Long Island, New York on 4 October 2006 were
it was displayed for a year and a half before being moved to Grumman
Plant 25.[153]
- 164604 - NAS Oceana Memorial Park, Naval Air Station Oceana, Virginia.
Last F-14 manufactured, assigned to VX-4, later VX-9, at Naval Air
Station Point Mugu, California during its operational service and used
the callsign "Vandy 1".[154]
Specifications (F-14D)
F-14A, VF 111 "Sundowners" (USS
Carl Vinson)
Data from U.S. Navy file,[155] Spick,[34] M.A.T.S.[156]
General characteristics
- Crew: 2 (Pilot and Radar Intercept Officer)
- Length: 62 ft 9 in (19.1 m)
- Wingspan:
- Spread: 64 ft (19.55 m)
- Swept: 38 ft (11.58 m)
- Height: 16 ft (4.88 m)
- Wing area: 565 ft² (54.5 m²)
- Airfoil: NACA 64A209.65 mod root, 64A208.91 mod tip
- Empty weight: 43,735 lb (19,838 kg)
- Loaded weight: 61,000 lb (27,700 kg)
- Max. takeoff weight: 74,350 lb (33,720 kg)
- Powerplant: 2 × General Electric F110-GE-400 afterburning turbofans
- Dry thrust: 13,810 lbf (61.4 kN) each
- Thrust with afterburner: 27,800 lbf (123.7 kN) each
- Maximum fuel capacity: 16,200 lb internal; 20,000 lb with 2x 267 gallon external tanks[34]
Performance
- Maximum speed: Mach 2.34 (1,544 mph, 2,485 km/h) at high altitude
- Combat radius: 500 nmi (575 mi, 926 km)
- Ferry range: 1,600 nmi (1,840 mi, 2,960 km)
- Service ceiling: 50,000+ ft (15,200 m)
- Rate of climb: >45,000 ft/min (229 m/s)
- Wing loading: 113.4 lb/ft² (553.9 kg/m²)
- Thrust/weight: 0.92
Armament
- Guns: 1× 20 mm (0.787 in) M61A1 Vulcan 6-barreled Gatling cannon, with 675 rounds
- Hardpoints: 10 total: 6× under-fuselage, 2× under nacelles and 2× on wing gloves[157][N 2] with a capacity of 14,500 lb (6,600 kg) of ordnance and fuel tanks[158]
- Missiles:
- Air-to-air missiles: AIM-54 Phoenix, AIM-7 Sparrow, AIM-9 Sidewinder
- Loading configurations:
- 2× AIM-9 + 6× AIM-54 (Rarely used due to weight stress on airframe)
- 2× AIM-9 + 2× AIM-54 + 3× AIM-7 (Most common load during Cold War era)
- 2× AIM-9 + 4× AIM-54 + 2× AIM-7
- 2× AIM-9 + 6× AIM-7
- 4× AIM-9 + 4× AIM-54
- 4× AIM-9 + 4× AIM-7
- Bombs:
- JDAM precision-guided munition (PGMs)
- Paveway series of laser-guided bombs
- Mk 80 series of unguided iron bombs
- Mk 20 Rockeye II
- Others:
- Tactical Airborne Reconnaissance Pod System (TARPS)
- LANTIRN targeting pod
- 2× 267 US gal (1,010 l; 222 imp gal) drop tanks for extended range/loitering time
Avionics
- Hughes AN/APG-71 radar
- AN/ASN-130 INS, IRST, TCS
- Remotely Operated Video Enhanced Receiver (ROVER) upgrade
Tomcat logo
The Tomcat logo design came when Grumman's Director of Presentation
Services, Dick Milligan, and one of his artists, Grumman employee Jim
Rodriguez, were asked for a logo by Grumman's Director of Business
Development and former Blue Angels #5 pilot, Norm Gandia.
[159]
Per Rodriguez, "He asked me to draw a lifelike Tomcat wearing boxing
gloves and trunks sporting a six-shooter on his left side; where the
guns are located on the F-14, along with two tails." The Cat was drawn
up after a tabby cat was sourced and used for photographs, and named
"Tom". The logo has gone through many variations, including one for the
then-Imperial Iranian Air Force
F-14, called "Ali-cat". The accompanying slogan "Anytime Baby!" was
developed by Norm Gandia as a challenge to the U.S. Air Force's McDonnell Douglas F-15 Eagle.
[159][160]
Notable appearances in media
Main article: F-14 Tomcat in fiction
See also
|
United States Navy portal |
|
Aviation portal |
- 4th generation jet fighter
- Teen Series
- Grumman XF10F Jaguar
- Related development
- General Dynamics/Grumman F-111B
- Aircraft of comparable role, configuration and era
- Boeing F/A-18E/F Super Hornet
- McDonnell Douglas F-15 Eagle
- Mikoyan MiG-25
- Panavia Tornado ADV
- Sukhoi Su-33
- Related lists
- Iranian aerial victories during the Iran-Iraq war
- List of military aircraft of the United States
- List of fighter aircraft
References
Notes
- Note: Admiral Thomas F. Connolly wrote the chapter, "The TFX – One Fighter For All".[8]
- The hardpoints
between nacelles include two on centerline plus four others next to
nacelles. Points between nacelles can only carry a maximum of four
missiles at one time. Each wing glove can carry one large pylon for
larger missiles, with one rail on the outboard side of the pylon for a
Sidewinder.
Citations
- "F-14 Tomcat fighter fact file." United States Navy, 5 July 2003. Retrieved: 20 January 2007.
- "Navy's 'Top Gun' Tomcat Fighter Jet Makes Ceremonial Final Flight." Associated Press, 22 September 2006. Retrieved: 17 July 2008.
- Thomason 1998, pp. 3–5.
- Dwyer, Larry. "The McDonnell F-4 Phantom II." aviation-history.com, 31 March 2010. Retrieved: 24 March 2012.
- Spick 2000, pp. 71–72.
- Marrett 2006, p. 18.
- Spangenberg, George. "Spangenberg Fighter Study Dilemma." georgespangenberg.com. Retrieved: 24 March 2012.
- Woolridge, Capt. E.T., ed. Into the Jet Age: Conflict and Change in Naval Aviation 1945-1975, an Oral History. Annapolis, Maryland: Naval Institute Press, 1995. ISBN 1-55750-932-8.
- Spick 1985, pp. 9–10.
- Spick 2000, p. 74.
- Spick 2000, p. 112.
- Gunston and Spick 1983, p. 112.
- Jenkins, Dennis R. F/A-18 Hornet: A Navy Success Story. New York: McGraw-Hill, 2000. ISBN 0-07-134696-1.
- Spick 2000, pp. 110–111.
- Baugher, Joe. "Grumman F-14A Tomcat." Joe Baugher's Encyclopedia of American Military Aircraft, 13 February 2000. Retrieved: 6 May 2010.
- Donald, David. "Northrop Grumman F-14 Tomcat, U.S. Navy today". Warplanes of the Fleet. London: AIRtime Publishing Inc, 2004. ISBN 1-880588-81-1.
- [1] Space Dynamics Laboratory: Tactical Air-borne Reconnaissance Pod System – Completely Digital. Retrieved: 22 April 2012.
- Anft, Torsent. "F-14 Bureau Numbers." Home of M.A.T.S. Retrieved: 30 September 2006.
- Friedman, Norman. "F-14." The Naval Institute Guide to World Naval Weapon Systems, Fifth edition. Annapolis MD: Naval Institute Press, 2006. ISBN 1-55750-262-5.
- "F-14 upgrades." global security.org. Retrieved: 24 March 2012.
- Gobel, Greg. "Bombcat / Tomcat In Service 1992:2005". Vectorsite.net, 1 November 2006. Retrieved: 8 December 2009.
- Pike, John. “F-14 Tomcat Systems.” GlobalSecurity.org. Retrieved: 19 December 2010.
- "Approved Navy Training System Plan for the F-14A, F-14B, and F-14D Aircraft (N88-NTSP-A-50-8511B/A)". globalsecurity.org
- [2] The U.S. Navy – Fact File: F-14 Tomcat fighter. Retrieved: 22 April 2012.
- "U.S. Navy's F-14D Tomcats Gain JDAM Capability." Navy Newsstand (United States Navy), 21 March 2003. Retrieved: 20 January 2007.
- "ROVER System Revolutionizes F-14's Ground Support Capability." Navy Newsstand (United States Navy), 14 December 2005. Retrieved: 20 January 2007.
- Spangenberg, George. “Brief History and Background of the F-14, 1955-1970.” George Spangenberg Oral History. Retrieved: 23 December 2009.
- Spangenberg, George.“Exhibit VF-2.” George Spangenberg Oral History, 8 February 1965. Retrieved: 23 December 2009.
- Spangenberg, George. “Statement of Mr. G.A. Spangenberg before the Senate Armed Services Subcommittee, June 1973.” George Spangenberg Oral History. Retrieved: 23 December 2009.
- Pike, John. “F-14 Tomcat Design.” GlobalSecurity.org. Retrieved: 5 April 2012.
- Dorr 1991, p. 50.
- "F-14A, Aircraft No. 3, BuNo. 157982." F-14 Association. Retrieved: 8 December 2009.
- Sgarlato 1988, pp. 40–46.
- Spick 2000, p. 81.
- Laurence K. Loftin, Jr. "Part II: The Jet Age, Chapter 10: Technology of the Jet Airplane, Turbojet and Turbofan Systems." Quest for Performance: The Evolution of Modern Aircraft, 29 February 2009. Retrieved: 29 January 2009.
- "NAVEDTRA No: 14313, Aviation Ordanceman." globalsecurity.org. Retrieved: 8 April 2011.
- Dorr 1991, p. 51.
- Holt, Ray M. "The F-14A “Tom Cat” Microprocessor." firstmicroprocessor.com, 23 February 2009. Retrieved: 8 December 2009.
- "Interoperability: A Continuing Challenge in Coalition Air Operations." RAND Monograph Report. pp. 108, 111. Retrieved: 16 November 2010.
- “AN/ALR-67(V)3 Advanced Special Receiver.” Federation of American Scientists. Retrieved: 29 December 2009.
- Rausa, Zeno. Vinson/CVW-11 "Vinson/CVW-11 report." Wings of Gold, Summer 1999. Retrieved: 8 December 2009.
- Holmes 2005, pp. 16, 17.
- "Briefing." DoD News, 5 January 1999. Retrieved: 8 December 2009.
- Baugher, Joe. "TARPS Pod for F-14." F-14 Tomcat, 13 February 2000. Retrieved: 6 May 2010.
- Gillcrest 1994, p. 168.
- "Capt. Dale "Snort" Snodgrass, USN (Ret.) Interview by John Sponauer". (30 August 2000). SimHQ. Retrieved: 26 November 2010.
- Baugher, Joe. "F-14." U.S. Navy and U.S. Marine Corps BuNos, 30 September 2006. Retrieved: 6 May 2010.
- Donald 2004, pp. 13, 15.
- "Squadron Homecoming Marks End of Era for Tomcats". U.S. Navy, 10 March 2006. Retrieved: 20 January 2007.
- Murphy, Stephen. "TR Traps Last Tomcat from Combat Mission." Navy Newsstand, 15 February 2006. Retrieved: 20 January 2007.
- "Final launch of the F-14 Tomcat." navy.mil. Retrieved: 8 December 2009.
- Tiernan, Bill. "F-14's Final Flight." Virginian-Pilot, 23 September 2006.
- Vanden Brook, Tom. "Navy retires F-14, the Coolest of Cold Warriors". USA Today, 22 September 2006. Retrieved: 20 January 2007.
- "Pentagon shreds F-14s to keep parts from enemies." AP, 2 July 2007. Retrieved: 8 December 2009.
- "Last of the Navy’s F-14 Tomcats head for shredder; 11 remain in desert storage". USAF 309 AMARG 3 (6): 2. 7 August 2009. Retrieved 22 July 2014.
- Cooper, Tom. Persian Cats: How Iranian air crews, cut off from U.S. technical support, used the F-14 against Iraqi attackers." Air & Space magazine, November 2006. Retrieved: 24 March 2012.
- Cooper, Tom and Farzad Bishop. Iranian F-14 Tomcat Units in Combat, pp. 85–88. Oxford: Osprey Publishing, 2004. ISBN 1 84176 787 5.
- "F-14 Tomcat interceptors in Iran". Ivanov, Grigoriy, 2003
- Cooper, Tom and Liam Devlin. "Iranian Air Power Combat Aircraft". Combat Aircraft, Vol. 9 No. 6, January 2009.
- "World Military Aircraft Inventory". 2013 Aerospace Source Book, Aviation Week and Space Technology, 2013.
- "US halts sale of F-14 jet parts." BBC News. Retrieved: 8 December 2009.
- "Iranian Air Force seeks return of F-14 bombers from U.S." Tehran Times
- Parsons, Gary. "Iran wants its F-14 back." AirForces Monthly, 5 August 2010.
- "Iranian Air Force Equips F-14 Fighter Jets with Hi-Tech Radars." FARS News Agency, Iran, 5 January 2011. Retrieved: 9 September 2012.
- "Iranian F-14 fighter jet crashes in country's south, both pilot and co-pilot killed." Washington Post, 26 January 2012. Retrieved: 24 March 2012.
- "F-14 Bureau Numbers." anft.net. Retrieved: 8 December 2009.
- Anft, Torsten. "Grumman Memorial Park." Home of M.A.T.S. Retrieved: 28 December 2006.
- Anft, Torsent. "F-14 Crashes sorted by Date." Home of M.A.T.S. Retrieved: 1 January 2008.
- Spick 2000, pp. 75–79.
- "F-14 Tomcat variants". GlobalSecurity.org. Retrieved: 20 September 2006.
- "Developing F-15C." Lockheed Martin Press Release, 28 April 2010.
- Jenkins 1997, p. 30.
- Saul, Stephanie. "Cheney Aims Barrage at F-14D Calls keeping jet a jobs program." Newsday Washington Bureau, 24 August 1989, p. 6.
- Spick 2000, p. 75.
- Isham, Marty. U.S. Air Force Interceptors: A Military Photo Logbook 1946-1979. North Branch, Minnesota: Specialty Press Publications, 2010. ISBN 1-58007-150-3.
- Donald 2004, pp. 9–11.
- "F-14 History." anft.net. Retrieved: 16 November 2010.
- Taghvaee, Babak. Aviation News Monthly, UK: Key Publishing, March 2012.
- Navy's Newest Squadron Prepares for New F-35 Fighters. Navy.mil. Retrieved on 2013-08-16.
- "VF-1285." anft.net. Retrieved: 8 December 2009.
- "VF-1485." anft.net. Retrieved: 8 December 2009.
- "VF-1486." anft.net. Retrieved: 8 December 2009.
- "F-14 Tomcat/157982." Cradle of Aviation Museum. Retrieved: 27 March 2013.
- "F-14 Tomcat/157984." National Naval Aviation Museum. Retrieved: 27 March 2013.
- "F-14 Tomcat/157988." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/157990." March Field Air Museum. Retrieved: 27 March 2013.
- "F-14 Tomcat/158623." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/158978." USS Midway Museum. Retrieved: 27 March 2013.
- "F-14 Tomcat/158985." Yanks Air Museum. Retrieved: 27 March 2013.
- "F-14 Tomcat/158998." Air Victory Museum. Retrieved: 27 Match 2013.
- "F-14 Tomcat/158999." Retrieved: 27 March 2013.
- "F-14 Tomcat/159025." Patriot's Point Maritime and Naval Museum. Retrieved: 27 March 2013.
- "F-14 Tomcat/159445." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/159448." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/159455." tomcatsforever.com. Retrieved: 28 March 2013.
- http://vmap.wikispaces.com/F-14D+Tomcat
- "F-14 Tomcat/159626." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/159626." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/159631." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/159829." Wings Over the Rockies Air & Space Museum. Retrieved: 27 March 2013.
- "F-14 Tomcat/159830." Western Museum of Flight. Retrieved: 27 March 2013.
- "F-14 Tomcat/159848." Tillamook Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/159853." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/159856." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/160382." Museum of Flight. Retrieved: 27 March 2013.
- "F-14 Tomcat/160386." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/160391." Texas Air Museum. Retrieved: 27 March 2013,
- "F-14 Tomcat/160395." Air Zoo. Retrieved: 28 March 2013.
- "F-14 Tomcat/160401." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/160403." Air Power Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/160441." Empire State Aeroscience Museum. Retrieved: 29 March 2013.
- "F-14 Tomcat/160658." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/160661." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/160666." Oakland Aviation Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/160684." Pima Air & Space Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/160694." USS Lexington Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/160889." Pacific Coast Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/160898." Palm Springs Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/160902." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/160903." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/160909." Warbird Registry. Retrieved: 27 March 2013.
- "F-14 Tomcat/160914." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/161134." Valiant Air Command Warbird Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/161163." Prairie Aviation Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/162591." Quonset Air Museum. Retrieved: 28 March 2013,
- "F-14 Tomcat/162608." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/162689." USS Hornet Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/162694." MAPS Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/162710." National Naval Aviation Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/157986." USS Intrepid Museum. Retrieved: 27 March 2013.
- "F-14 Tomcat/161598." Tulsa Air and Space Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/161605." Wings of Eagles Discovery Center. Retrieved: 28 March 2013.
- "F-14 Tomcat/161615." Combat Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/161620." Selfridge Military Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/161623." Patuxent River Naval Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/162912." Grissom Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/162916." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/162926." New England Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/159600." OV-10 Bronco Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/159610." NASM. Retrieved: 27 March 2013.
- "F-14 Tomcat/159619." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/161166." Carolinas Aviation Museum. Retrieved: 29 Marc 2013.
- "F-14 Tomcat/162595." Warbird Registry. Retrieved: 28 March 2013.
- "F-14 Tomcat/163893." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/163897." Aerospace Museum of California. Retrieved: 28 March 2013.
- "F-14 Tomcat/163902." Hickory Aviation Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/163904." Pacific Aviation Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/164342." Wings Over Miami Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/164343." Evergreen Aviation Museum. Retrieved: 29 March 2013.
- "F-14 Tomcat/164346." Virginia Aviation Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/164350." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/164601." Castle Air Museum. Retrieved: 28 March 2013.
- "F-14 Tomcat/164603." tomcatsforever.com. Retrieved: 28 March 2013.
- "F-14 Tomcat/164604." tomcatsforever.com. Retrieved: 28 March 2013.
- U.S. Navy file
- "F-14 Specifications." M.A.T.S. Retrieved: 23 December 2009.
- Spick 2000, pp. 112–115.
- Baugher, Joe. "Grumman F-14D Tomcat" Grumman F-14 Tomcat. 5 February 2000.
- "Tomcat Association".
- The Tomcat Logo | Grumman Memorial Park. Grummanpark.org. Retrieved on 2013-08-16.
Bibliography
- Bishop, Farzad and Tom Cooper. Iranian F-14 Tomcat Units (Osprey Combat Aircraft #49). Oxford, UK: Osprey Publishing Limited, 2004. ISBN 978-1-84176-787-1.
- Crosby, Francis. Fighter Aircraft. London: Lorenz Books, 2002. ISBN 0-7548-0990-0.
- Donald, David. Warplanes of the Fleet. London: AIRtime Publishing Inc., 2004. ISBN 1-880588-81-1.
- Dorr, Robert F. "F-14 Tomcat: Fleet Defender". World Air Power Journal, Volume 7, Autumn/Winter 1991, pp. 42–99. London: Aerospace Publishing. ISSN 0959-7050.
- Drendel, Lou. F-14 Tomcat in Action. Carrollton, Texas: Squadron/Signal Publications, 1977. ISBN 0-89747-031-1.
- Eden, Paul. The Encyclopedia of Modern Military Aircraft. London: Amber Books, 2004. ISBN 1-904687-84-9.
- Eshel, D. Grumman F-14 Tomcat (War Data No. 15). Hod Hasharon, Israel: Eshel-Dramit Ltd., 1982.
- Gillcrest, Paul T. Tomcat!: The Grumman F-14 Story . Atglen, Pennsylvania: Schiffer Publishing, Ltd. 1994. ISBN 0-88740-664-5
- Gunston, Bill and Mike Spick. Modern Air Combat. New York: Crescent Books, 1983. ISBN 0-517-41265-9.
- Holmes, Tony. US Navy F-14 Tomcat Units of Operation Iraqi Freedom (Osprey Combat Aircraft #52). Oxford, UK: Osprey Publishing Limited, 2005. ISBN 1-84176-801-4.
- Holmes, Tony. F-14 Tomcat Units of Operation Enduring Freedom (Osprey Combat Aircraft #70). Oxford, UK: Osprey Publishing Limited, 2008. ISBN 978-1-84603-205-9.
- Jenkins, Dennis R. Grumman F-14 Tomcat: Leading US Navy Fleet Fighter. London: Aerofax, 1997. ISBN 1-85780-063-X.
- Marrett, George. "Flight of the Phoenix." Airpower, Volume 36, No. 7, July 2006.
- Sgarlato, Nico. "F-14 Tomcat" (Italian). Aereonautica & Difesa magazine Edizioni Monografie SRL., December 1988.
- Spick, Mike. F-14 Tomcat, Modern Fighting Aircraft, Volume 8. New York: Arco Publishing, 1985. ISBN 0-668-06406-4.
- Spick, Mike. "F-14 Tomcat". The Great Book of Modern Warplanes. St. Paul, Minnesota: MBI Publishing Company, 2000. ISBN 0-7603-0893-4.
- Stevenson, J.P. Grumman F-14, Vol. 25. New York: Tab Books, 1975. ISBN 0-8306-8592-8.
- Thomason, Tommy. Grumman Navy F-111B Swing Wing (Navy Fighters No. 41). Simi Valley, California: Steve Ginter, 1998. ISBN 0-942612-41-8.
- Wilson, Stewart. Combat Aircraft since 1945. Fyshwick, Australia: Aerospace Publications, 2000. ISBN 1-875671-50-1.